Harmonic potentials for quaternionic symmetric σ-models
نویسنده
چکیده
We construct N = 2 superspace Lagrangians for quaternionic symmetric σmodels G/H × Sp(1), or equivalently, quaternionic potentials for these symmetric spaces. They are homogeneous H invariant polynomials of order 4 which are similar to the quadratic Casimir operator of H. The construction is based on an identity for the structure constants specific for quaternionic symmetric spaces. † On leave from the Laboratory of Theoretical Physics, JINR, Dubna, Russia ‡ On leave from P.N. Lebedev Physical Institute, Theoretical Department, 117924 Moscow, Leninsky prospect 53, Russia
منابع مشابه
Harmonic space and quaternionic manifolds
We find a principle of harmonic analyticity underlying the quaternionic (quaternionKähler) geometry and solve the differential constraints which define this geometry. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group...
متن کاملHarmonic Maps with Prescribed Singularities on Unbounded Domains
The Einstein/Abelian-Yang-Mills Equations reduce in the stationary and axially symmetric case to a harmonic map with prescribed singularities φ : R \Σ → H C into the (k+1)-dimensional complex hyperbolic space. In this paper, we prove the existence and uniqueness of harmonic maps with prescribed singularities φ : R \ Σ → H, where Σ is an unbounded smooth closed submanifold of R of codimension at...
متن کاملHarmonic Superspace, Minimal Unitary Representations and Quasiconformal Groups
We show that there is a remarkable connection between the harmonic superspace (HSS) formulation of N = 2, d = 4 supersymmetric quaternionic Kähler sigma models that couple to N = 2 supergravity and the minimal unitary representations of their isometry groups. In particular, for N = 2 sigma models with quaternionic symmetric target spaces of the form G/H × SU(2) we establish a one-to-one mapping...
متن کاملRotationally Symmetric Harmonic Diffeomorphisms between Surfaces
and Applied Analysis 3 We will prove this theorem by contradiction. The idea is similar to the proof of Theorem 1. Suppose ψ is a rotationally symmetric harmonic diffeomorphism from P(a) onto D∗ with the metric σ 2 d|u|, with the form ψ = g(r)e, then substituting ψ, σ 2 to u, σ in (2), respectively, we can get
متن کاملSpecial Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations
In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...
متن کامل